Chronic exposure to TGFβ1 regulates myeloid cell inflammatory response in an IRF7-dependent manner.

نویسندگان

  • Merav Cohen
  • Orit Matcovitch
  • Eyal David
  • Zohar Barnett-Itzhaki
  • Hadas Keren-Shaul
  • Ronnie Blecher-Gonen
  • Diego Adhemar Jaitin
  • Antonio Sica
  • Ido Amit
  • Michal Schwartz
چکیده

Tissue microenvironment influences the function of resident and infiltrating myeloid-derived cells. In the central nervous system (CNS), resident microglia and freshly recruited infiltrating monocyte-derived macrophages (mo-MΦ) display distinct activities under pathological conditions, yet little is known about the microenvironment-derived molecular mechanism that regulates these differences. Here, we demonstrate that long exposure to transforming growth factor-β1 (TGFβ1) impaired the ability of myeloid cells to acquire a resolving anti-inflammatory phenotype. Using genome-wide expression analysis and chromatin immunoprecipitation followed by next-generation sequencing, we show that the capacity to undergo pro- to anti-inflammatory (M1-to-M2) phenotype switch is controlled by the transcription factor interferon regulatory factor 7 (IRF7) that is down-regulated by the TGFβ1 pathway. RNAi-mediated perturbation of Irf7 inhibited the M1-to-M2 switch, while IFNβ1 (an IRF7 pathway activator) restored it. In vivo induction of Irf7 expression in microglia, following spinal cord injury, reduced their pro-inflammatory activity. These results highlight the key role of tissue-specific environmental factors in determining the fate of resident myeloid-derived cells under both physiological and pathological conditions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chronic exposure to TGFb1 regulates myeloid cell inflammatory response in an IRF7-dependent manner

Tissue microenvironment influences the function of resident and infiltrating myeloid-derived cells. In the central nervous system (CNS), resident microglia and freshly recruited infiltrating monocyte-derived macrophages (mo-MΦ) display distinct activities under pathological conditions, yet little is known about the microenvironment-derived molecular mechanism that regulates these differences. H...

متن کامل

SMAD4 loss enables EGF, TGFβ1 and S100A8/A9 induced activation of critical pathways to invasion in human pancreatic adenocarcinoma cells

Epidermal Growth Factor (EGF) receptor overexpression, KRAS, TP53, CDKN2A and SMAD4 mutations characterize pancreatic ductal adenocarcinoma. This mutational landscape might influence cancer cells response to EGF, Transforming Growth Factor β1 (TGFβ1) and stromal inflammatory calcium binding proteins S100A8/A9. We investigated whether chronic exposure to EGF modifies in a SMAD4-dependent manner ...

متن کامل

Role of Oxidative Stress in Modulating Unfolded Protein Response Activity in Chronic Myeloid Leukemia Cell Line

Background: Recently, it has been revealed that tyrosine kinase inhibitors (TKIs) act through inducing both oxidative and endoplasmic reticulum (ER) stress in chronic myeloid leukemia cells. However, ER stress signaling triggers both apoptotic and survival processes within cells. Nevertheless, mechanisms by which TKIs avoid the pro-survival effects are not clear. The aim of this study was to ev...

متن کامل

CuO nanoparticles induce cytotoxicity and apoptosis in human K562 cancer cell line via mitochondrial pathway, through reactive oxygen species and P53

Objective(s): This study focused on determining cytotoxic effects of copper oxide nanoparticles (CuO NPs) on chronic myeloid leukemia (CML) K562 cell line in a cell-specific manner and its possible mechanism of cell death. We investigated the cytotoxicity of CuO NPs against K562 cell line (cancerous cell) and peripheral blood mononuclear cell (normal cell). Materials and Methods: The toxicity w...

متن کامل

Nanocurcumin-Mediated Down-Regulation of Telomerase Via Stimulating TGFβ1 Signaling Pathway in Hepatocellular Carcinoma Cells

Background: Curcumin, extracted from turmeric, represents enormous potential to serve as an anticancer agent. Telomerase is viewed as a prominent molecular target of curcumin, and transforming growth factor-β1 (TGFβ1) has proven to be a major inhibitory signaling pathway for telomerase activity. In the current study, we aimed to explore suppressive effects of nanocurcumin on telomeras...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The EMBO journal

دوره 33 24  شماره 

صفحات  -

تاریخ انتشار 2014